If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+5y-150=0
a = 5; b = 5; c = -150;
Δ = b2-4ac
Δ = 52-4·5·(-150)
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-55}{2*5}=\frac{-60}{10} =-6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+55}{2*5}=\frac{50}{10} =5 $
| 7x=24+180 | | 15x=3x+180 | | 15x=3x+90 | | 15x=3x=180 | | 9(x+1)-36=7(x-10) | | 4(3y-5)=(11y+4) | | 15/2x=90 | | X+4+2x-7=90 | | 3/2x+6/2+3=90 | | 12/13x+8=32 | | 9y-29=5y+15 | | 4x+5+3x+2+x+3=180 | | -4n^2+26n-72=0 | | 32=(x7)-(x3) | | C=b/5 | | 2m+14=3m-30 | | x-163/16=73/4 | | x-6,339=-1,132 | | x-(-6)=-2.563 | | -6n+19=-6n-10 | | 10n-14=8n+47 | | 8x+12=5x+36 | | 3x+22+6x+10=131 | | -8n+11=-29 | | 9x+15-3x=51 | | 6x²+6=10x | | 2(x+7)=3x | | 12n-14=70 | | 8^(4x)=3.1 | | 8^4x=3.1 | | x/3+2=3/7 | | 2y/3+1/6=7/6 |